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Spatial-dispersion and relativistic effects in the optical sum rules
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Abstract. We describe a procedure to take into account the spatial dispersion of the optical excitations
in the susceptibility sum rules. We show that this implies that relativistic corrections of the same order
must be considered. The final result is a decrease of the total oscillator strength equal to the ratio of the
average electron kinetic energy with mc2. We propose experiments with synchrotron radiation sources on
crystals of heavy elements to observe the described effect.

PACS. 78.20.Ci Optical constants (including refractive index, complex dielectric constant, absorption,
reflection and transmission coefficients, emissivity) – 78.40.-q Absorption and reflection spectra: visible
and ultraviolet – 71.15.Rf Relativistic effects

1 Introduction

The optical sum rules have always attracted considerable
attention because they are independent of any physical
model and are strictly connected with general principles
such as causality and inertia [1,2]. They are also of interest
to experimentalists because they give information on the
exhaustion of optical transitions and on the accuracy of
all physical models; their validity has been experimentally
verified in aluminum crystals by synchrotron radiation ab-
sorption and dispersion up to very high frequency [3,4].

A question which has not been sufficiently investigated
is the role of spatial dispersion in the optical sum rules.
It is generally assumed that the two variables ω and k
on which the optical constants depend can be treated as
independent quantities, but this is not the case for optical
transverse modes because they must obey the dispersion
equation [5]

ω2 =
c2k2

ε(k, ω)
· (1)

The problem of taking into account equation (1) in
the Kramers-Kronig relations has been considered by
Leontovich [6] and by Davydov [7], and a mathemat-
ical procedure has been suggested by Ginzburg and
Meiman [8], who have first investigated the analytical
properties of the optical functions ε(k, ω) and n =

√
ε

in the complex plane of the frequency variable.
Another point to be considered is the role played by

relativistic corrections. The validity of the conventional
a e-mail: scandolo@princeton.edu

sum rules is often limited to the dipole approximation,
which is the lowest order in a relativistic expansion, and
it corresponds, in crystals, to taking the limit k = 0 in
the dielectric function which appears in equation (1). It
has been shown [9], for atoms, taking into account higher
order relativistic corrections (magnetic dipoles, electric
quadrupoles, etc.) in the independent-electron approxi-
mation, that the Thomas-Reiche-Kuhn (TRK) sum rule
is modified in such a way that for any electron the oscil-
lator strengths f0n from state “0” to any state n do not
sum to one, but we have:

∑
n

f0n = 1− 〈T 〉0
mc2

(2)

where 〈T 〉0 denotes the average of the kinetic energy T on
the ground state. A study of the relativistic corrections
on the sum rule for the X-ray scattering factor has been
recently carried out by Aucar, Oddershede and Sabin [10],
who give a more accurate expression for the wavevector
dependence of the sum rule, always considering photon
momentum and frequency as independent variables.

In the present work we wish to study the sum rules of
the optical response of solid materials taking into account
both spatial dispersion and relativistic corrections. We will
follow the suggestion of Ginzburg and Meiman [8] for the
corrections due to spatial dispersion and will determine
the constitutive relativistic equation for ε(k, ω).

In Section 2 we give the general theory of the relativis-
tic response function with spatial dispersion. In Section 3
we discuss the analytic properties and the asymptotic
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behavior at high frequencies. In Section 4 we derive the
sum rules. A discussion of the results is given in Section 5.

2 General theory

Following the approach of Ginzburg and Meiman [8], we
define a new complex dielectric response function ε̄ which
depends on frequency only, by making use of equation (1)
which allows to express k as a function of ω. We have, in
an isotropic medium,

ε̄(ω) = ε
(
ẑ
ω

c

√
ε̄(ω), ω

)
, (3)

where ẑ is the unitary vector that identifies the direc-
tion of propagation. Our first objective is to establish the
existence of Kramers-Kronig relations for ε̄(ω). This is
equivalent to verifying the holomorphism of function (3)
in the upper half of the complex ω plane, according to
Titschmarsh’s theorem [11]. Leontovich [6] demonstrated
this property in the low density limit where it is appropri-
ate to use the approximation ε̄(ω) ' ε(ẑω/c, ω). Ginzburg
and Meiman [8], instead, make use of the expansion in
powers of kz, which, in isotropic and non-gyrotropic me-
dia reads

ε̄(ω) = ε(0, ω) +
k2
z

2
∂2ε

∂k2
z

(k, ω)|k=0 +O(k4). (4)

Where the linear term in kz does not appear because it
vanishes by time reversal. Higher than quadratic terms
have been neglected due to the smallness of k in the opti-
cal modes. Using for kz expressions (1) and (3), and sub-
stituting it into (4), we obtain, to order 1/c2,

ε̄(ω) =
ε(0, ω)

1− ω2

2c2
∂2ε
∂k2
z
(k, ω)|k=0

' ε(0, ω)
[
1 +

ω2

2c2
∂2ε

∂k2
z

(k, ω)|k=0

]
(5)

which coincides with the expression given by Ginzburg
and Meiman [8]. This is an holomorphic function because
so are ε(0, ω) and the second derivative appearing on the
right hand side of equation (5). To obtain Kramers-Kronig
relations for ε̄(ω) − 1 we need to show that this function
goes to zero for ω →∞ faster than ω−1.

The asymptotic behavior of ε(0, ω) has been demon-
strated in the non-relativistic approximation to be 1 −
ω2

p/ω
2 [1], where ωp is the plasma frequency and this has

been shown to be sufficient to obtain all the usual sum
rules, since ε(0, ω) is holomorphic in the upper complex
plane. We must now find the asymptotic behavior of ex-
pression (5) including spatial dispersion and relativistic
corrections. This is necessary because spatial dispersion
introduces terms of order 1/c2 and to be consistent also
ε(0, ω) has to be calculated to order 1/c2. Consequently we
can compute the susceptibility from the current density

〈J(k, ω)〉 =
ω2

c

[
ε(k, ω)

4π

]
A(k, ω). (6)

To obtain the relativistic expression for the current
density we must start from the Dirac definition of the
current density of a given particle, in the presence of a po-
tential V (r) and of a radiation field expressed in terms of
A(r, t). This is different from the approach of reference [9],
because they introduce the relativistic corrections on the
Hamiltonian operator only.

The relativistic definition of the current is [12]:

Jα(r, t) = ec
∑
i

[〈φ|σαδ(r− ri)|χ〉

+〈χ|σαδ(r − ri)|φ〉] (7)

where σα denotes the α Cartesian component of the Pauli
matrices and φ and χ are the “large” and “small” com-
ponents respectively of the four-spinors, which satisfy the
equations:

(E′ − V )|φ〉 = cσα(pα − eAα/c)|χ〉 (8)

(E′ + 2mc2 − V )|χ〉 = cσα(pα − eAα/c)|φ〉 (9)

where E′ + 2mc2 is the eigenvalue. Substituting (9) into
equation (7) and expanding to order 1/c2 we obtain:

Jα(r, t) =
e

2m

∑
i

[
〈φ|σαδ(r− ri)

(
1− p2

4m2c2

)
× σβ

(
pβ −

eAβ
c

)
|φ〉+ 〈φ|σβ

(
pβ −

eAβ
c

)
×
(

1− p2

4m2c2

)
δ(r− ri)σα|φ〉

]
· (10)

We observe that this expression, when transformed in
the expectation value of the quasi-relativistic wave func-
tion ψ = Nφ [12], requires the normalization N = 1 +
p2/8m2c2. Developing expression (10), with normalization
included, and following the procedure indicated in [12] we
obtain

Jα(r, t) =
e

2m

∑
i

[
〈ψ|σα

(
1 +

p2

8m2c2

)
δ(r− ri)

×
(

1− p2

4m2c2

)
σβ

(
pβ −

eAβ
c

)(
1 +

p2

8m2c2

)
|ψ〉

+ 〈ψ|
(

1 +
p2

8m2c2

)
σβ

(
pβ −

eAβ
c

)(
1− p2

4m2c2

)
×δ(r− ri)σα

(
1 +

p2

8m2c2

)
|ψ〉
]
· (11)
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Making use of the algebraic properties of the Pauli
matrices and taking the spatial Fourier transform in
the random phase approximation we obtain, from equa-
tion (11),

J(k, t) = J0(k, t)− ne2

mc
A(k, t) (12)

where n = N/Ω is the electron density and J0 denotes
the Fourier transform of the contribution in equation (11)
which does not explicitly depend on the vector potential.

Since the last term of (12) is already linear in the
perturbing field, we are left with evaluating the linear
response of J0 to the field. This can be accomplished
using time dependent perturbation theory, and the
interaction Hamiltonian in the form [1]

Hint = −Ω
c

∑
k

J0(k) ·A(−k, t). (13)

The time evolution of J0, from linear response theory [13],
is given by

〈J0(k, t)〉 =
∫
G(k, t′)A(k, t− t′)dt′, (14)

with the time-dependent response function given by

G(k, t) = − Ω

i~c
〈[J0(−k,−t),J0(k, 0)]〉0 θ(t), (15)

θ being the Heaviside “step” function. Considering the
time Fourier transform of equation (14) we obtain

〈J0(k, ω)〉 = G(k, ω)A(k, ω) (16)

and making use of (12) we derive the expression for the
total current

〈J(k, ω)〉 = G(k, ω)A(k, ω) − ne2

mc
A(k, ω). (17)

The above expression, recalling the definition (6),
gives our desired susceptibility

ε(k, ω) = 1 +
1
ω2

[
4πcG(k, ω)− ω2

p

]
(18)

where ω2
p = 4πNe2/Ωm.

3 Asymptotic behavior

The asymptotic behavior of ε(ω, 0), with relativistic cor-
rections, as required in (5), can be immediately obtained
from (18), and is given by

ε(0, ω) = 1−
ω2

p

ω2
+ o(ω−2), (19)

since G(0, ω) vanishes at infinity.

We can observe that relativistic corrections give van-
ishing contribution in the asymptotic behavior.

We must next consider spatial dispersion. To find the
asymptotic behavior of ε̄(ω) with spatial dispersion we
need to compute the second derivative of expression (18)
with respect to k and use it in equation (5). In this case
we can use the nonrelativistic expression because it gives
already a contribution of order 1/c2. In particular, since
expression (18) only depends on k through G(k, ω), we
can consider the asymptotic behavior in the frequency
variable of the second derivative of G with respect to k,
by making use of the time-dependent response function
G(k, t) and taking the limit for t → 0+. Since at infinite
time the Green’s function and all its time derivatives
vanish, considering explicitly the lowest order terms in
the expansion we obtain:

∂2G

∂k2
z

(k, ω)|k=0 =
1
iω

∂2G

∂k2
z

(k, t)
∣∣∣∣ k=0
t→0+

− 1
ω2

∂

∂t

∂2G

∂k2
z

(k, t)
∣∣∣∣ k=0
t→0+

+ o(ω−2). (20)

We show in the Appendix that the first term to the
right hand side of equation (20) vanishes and the second
term gives a contribution which leads to the asymptotic
behavior

∂2G̃

∂k2
z

(k, ω)|k=0 =
1
ω2

2e2n

m3c
〈p2〉0 + o(ω−2). (21)

We are now in a position to use the asymptotic be-
havior (21) into expression (5), by means of equation (18)
and thus obtain the total asymptotic behavior of the
spatial dependent dielectric function

ε̄(ω) =

[
1−

ω2
p

ω2

][
1 +

ω2
p

ω2

〈p2〉0
m2c2

]
+O(ω−3)

= 1−
ω2

p

ω2

(
1− 〈p

2〉0
m2c2

)
+O(ω−3). (22)

4 Sum rules

The above desired asymptotic behavior (22), combined
with the holomorphic properties of ε̄(ω) on the upper
half of the complex ω plane are sufficient to derive the
Kramers-Kronig relations for ε̄(ω), whose expressions are
formally identical to the usual ones [1,2], and do not need
do be reported here.

We then follow the usual procedure of comparing the
asymptotic behavior (22) with the expression that origi-
nates from the Kramers-Kronig relations using the super-
convergence theorem [1,14] and obtain the new sum rules,
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with spatial dispersion. They are∫ ∞
0

ωImε̄(ω)dω =
π

2
ω2

p

[
1− 2〈T 〉0

3mc2

]
(23)

and ∫ ∞
0

Re [ε̄(ω)− 1] dω = 0 (24)

where we have used the kinetic energy 〈T 〉0 averaged over
all occupied states, which, in isotropic media, is related
to 〈p2

x〉 by 3〈p2
x〉0 = 2m〈T 〉0. Equations (23, 24) give the

desired sum rules with both spatial dispersion and rela-
tivistic corrections to order 1/c2.

We wish to remark that the spatial dispersion correc-
tion and the relativistic correction have to be considered
to the same order, but only the dispersion contribution
gives a non vanishing result to order 1/c2.

5 Discussion and conclusions

The new sum rules (23) and (24) derived in the previ-
ous section modify the TRK sum rule and the Altarelli-
Dexter-Nussenzweig-Smith (ADNS) sum rule in two ways.
First of all, the spatial dependence is included properly in
the frequency dependence of the optical function through
expression (5). Secondly, the relativistic effects are also
included. As a result the nonrelativistic total sum is mod-
ified by the factor [1− 2〈T 〉0

3mc2 ], which indicates a sum rule
anomaly which increases with the atomic number of the
elements of the crystal and with the binding energy of the
electrons considered in the sum. By the virial theorem, in
fact, 〈T 〉0 is the average binding energy of the electrons,
and this in mc2 units gives the magnitude of the anomaly.

Our result does not agree with the relativistic anomaly
in the sum rule computed by Levinger et al. [9] for a
Dirac electron, because they only include relativistic cor-
rections in the Hamiltonian and not in the operators, as
already noted in reference [10]. Our results also differ from
the expression recently derived by Aucar, Oddershede and
Sabin [10] for the relativistic corrections to the TRK sum
rule, because they take the limit k → 0 for the optical case
and consequently do not consider the spatial dispersion.
We think that the same correction to the sum rules must
be valid in the atomic case as well as in all solid state cases
when spatial dispersion is explicitly considered. The role
of spatial dispersion is equivalent to that due to multipolar
expansions, and differs in any case from the dipolar lon-
gitudinal relativistic correction given by Aucar et al. [10].

A verification of the above corrections to the TRK
sum rule has never been considered in all experimental
data now available, but may be relevant in the study of
the susceptibility of heavy element crystals, because the
new synchrotron radiation laboratories provide sources of
continuous radiation up to frequencies in the far asymp-
totic range. A first verification of the optical sum rules
was carried out by Shiles and Smith [3] on aluminum. In

this case the relativistic correction to ω2
p is of order 10−3,

which could already be detected. With the synchrotron
radiation now available in high energy sources like ESRF
at Grenoble, one can easily reach the region of 100 keV,
and explore the asymptotic behavior and the sum rule for
heavier elements like Cu or Ag, where the correction, of
order 10−1, may be easily observed. A detailed analysis
of the absorption spectrum of Si and Ge up to very high
photon energy would complete the analysis of interband
transition probabilities [15] to include the contributions
from core states and the relevant corrections on the band
structure and on the sum rule.

We wish to acknowledge Luciano Fonda for suggesting the rel-
evance of relativistic corrections to sum rules. We are also in-
debted to Vladimir Agranovich for pointing out the importance
of spatial dispersion effects.

Appendix

The aim of this appendix is to evaluate the derivatives, in
expression (20), of the time-dependent response function
G(kz , t), defined in (15).

The second derivative of G with respect to the
wavevector can be written as

∂2G

∂k2
z

(kz , t)
∣∣∣∣
kz=0

=− Ω

i~c

〈[
∂2J0x

∂k2
z

(kz ,−t)
∣∣∣∣
kz=0

, J0x(0, 0)

]

− 2

[
∂J0x

∂kz
(kz ,−t)

∣∣∣∣
kz=0

,
∂J0x

∂kz
(kz , 0)

∣∣∣∣
kz=0

]

+

[
J0x(0,−t), ∂

2J0x

∂k2
z

(kz , 0)
∣∣∣∣
kz=0

]〉
(A1)

where the current operator J0x(kz , t) is defined, from (14)
and (15) as

J0x(kz , t) =
e

mΩ

∑
i

pix(t)e−ikzzi(t). (A2)

We recall that we have to consider here only the nonrela-
tivistic terms, because they already give a contribution of
order 1/c2 in (5). The first derivative with respect to kz
that appears in (A1) is given by

∂J0x

∂kz
(kz ,−t)

∣∣∣∣
kz=0

= − ie
mΩ

∑
i

pix(−t)zi(−t), (A3)

while the second derivative is given by

∂2J0x

∂k2
z

(kz ,−t)
∣∣∣∣
kz=0

= − e

mΩ

∑
i

pix(−t)z2
i (−t). (A4)
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The t → 0+ limit of (A1), appearing in the r.h.s. of (20)
is readily evaluated from (A1), using (A3) and (A4), and
gives

∂2G

∂k2
z

(kz , t)
∣∣∣∣
kz=0

=
Ω

i~c
e2

m2Ω2

〈[∑
i

pixz
2
i ,
∑
i

pix

]

− 2

[∑
i

pixzi,
∑
i

pixzi

]

+

[∑
i

pix,
∑
i

pixz
2
i

]〉
= 0. (A5)

This gives the general result that the first term to the
r.h.s. of equation (20) vanishes.

The first derivative of (A1) with respect to time, which
appears in the second term to the r.h.s. of (20), is evalu-
ated from (A1) once the derivative of (A2, A3), and (A4)
with respect to time are carried out. These are computed
using the well-known expressions for the time derivative
of the position and momentum operators

dzi
dt

=
pix
dt
,

dpix
dt

= − ∂V
∂xi
· (A6)

From (A2) we have

∂J0x

∂t
(0,−t)

∣∣∣∣
kz=0

=
e

mΩ

∑
i

∂V

∂xi
(A7)

and from (A3)

∂

∂t

∂J0x

∂kz
(kz,−t)

∣∣∣∣
kz=0

= − ie
mΩ

∑
i

(
∂V

∂xi
zi − pix

piz
m

)
(A8)

and finally, from (A4),

∂

∂t

∂2J0x

∂k2
z

(kz ,−t)
∣∣∣∣
kz=0

=

− e

mΩ

∑
i

(
∂V

∂xi
z2
i −

pix
m

(pizzi + zipiz)
)
. (A9)

We are now in a position to compute the first deriva-
tive of (A1) with respect to time, which, making use of
(A7, A8), and (A9), reads

∂

∂t

∂2G

∂k2
z

(kz, t)
∣∣∣∣
kz=0

=
Ω

i~c
e2

m2Ω2

〈[∑
i

∂V

∂xi
z2
i

+
pix

m
(pizzi + zipiz),

∑
i

pix

]

+ 2

[∑
i

∂V

∂xi
zi +

pix
m
piz,

∑
i

pixzi

]

−
[∑

i

∂V

∂xi
,
∑
i

pixz
2
i

]〉

=− 2e2

m3cΩ

∑
i

〈p2
ix〉0·

(A10)
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